Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 135(19): 7264-71, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23611474

RESUMEN

This paper describes an investigation of the interfacial chemistry that enables formation of a multielectron ground-state charge-transfer (CT) complex of oleate-coated PbS quantum dots (QDs) and tetracyanoquinodimethane (TCNQ) in CHCl3 dispersions. Thermodynamically spontaneous electron transfer occurs from sulfur ions on the surfaces of the QDs (radius = 1.6 nm) to adsorbed TCNQ molecules and creates indefinitely stable ion pairs that are characterized by steady-state visible and mid-infrared absorption spectroscopy of reduced TCNQ and by NMR spectroscopy of the protons of oleate ligands that coat the QDs. The combination of these techniques shows that (i) each QD reduces an average of 4.5 TCNQ molecules, (ii) every electron transfer event between the QD and TCNQ occurs at the QD surface, (iii) sulfur ions on the surfaces of the QDs (and not delocalized states within the QDs) are the electron donors, and (iv) some TCNQ molecules adsorb directly to the surface of the QDs while others adsorb upon displacement of oleate ligands.

2.
J Am Chem Soc ; 134(50): 20440-5, 2012 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-23167533

RESUMEN

We study the effects of molecular structure on the electronic transport and mechanical stability of single-molecule junctions formed with Au point contacts. Two types of linear conjugated molecular wires are compared: those functionalized with methylsulfide or amine aurophilic groups at (1) both or (2) only one of its phenyl termini. Using scanning tunneling and atomic force microscope break-junction techniques, the conductance of mono- and difunctionalized molecular wires and its dependence on junction elongation and rupture forces were studied. Charge transport through monofunctionalized wires is observed when the molecular bridge is coupled through a S-Au donor-acceptor bond on one end and a relatively weak Au-π interaction on the other end. For monofunctionalized molecular wires, junctions can be mechanically stabilized by installing a second aurophilic group at the meta position that, however, does not in itself contribute to a new conduction pathway. These results reveal the important interplay between electronic coupling through metal-π interactions and quantum mechanical effects introduced by chemical substitution on the conjugated system. This study affords a strategy to deterministically tune the electrical and mechanical properties through molecular wires.

3.
Nano Lett ; 12(3): 1643-7, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22352939

RESUMEN

Electronic factors in molecules such as quantum interference and cross-conjugation can lead to dramatic modulation and suppression of conductance in single-molecule junctions. Probing such effects at the single-molecule level requires simultaneous measurements of independent junction properties, as conductance alone cannot provide conclusive evidence of junction formation for molecules with low conductivity. Here, we compare the mechanics of the conducting para-terminated 4,4'-di(methylthio)stilbene and moderately conducting 1,2-bis(4-(methylthio)phenyl)ethane to that of insulating meta-terminated 3,3'-di(methylthio)stilbene single-molecule junctions. We simultaneously measure force and conductance across single-molecule junctions and use force signatures to obtain independent evidence of junction formation and rupture in the meta-linked cross-conjugated molecule even when no clear low-bias conductance is measured. By separately quantifying conductance and mechanics, we identify the formation of atypical 3,3'-di(methylthio)stilbene molecular junctions that are mechanically stable but electronically decoupled. While theoretical studies have envisaged many plausible systems where quantum interference might be observed, our experiments provide the first direct quantitative study of the interplay between contact mechanics and the distinctively quantum mechanical nature of electronic transport in single-molecule junctions.


Asunto(s)
Modelos Químicos , Modelos Moleculares , Nanoestructuras/química , Nanoestructuras/ultraestructura , Estilbenos/química , Sitios de Unión , Simulación por Computador , Conductividad Eléctrica , Teoría Cuántica
4.
Am J Bot ; 95(8): 931-42, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21632416

RESUMEN

Japanese knotweeds are among the most invasive organisms in the world. Their recent expansion into salt marsh habitat provides a unique opportunity to investigate how invasives establish in new environments. We used morphology, cytology, and AFLP genotyping to identify taxa and clonal diversity in roadside and salt marsh populations. We conducted a greenhouse study to determine the ability to tolerate salt and whether salt marsh populations are more salt tolerant than roadside populations as measured by the efficiency of PSII, leaf area, succulence, height, root-to-shoot ratio, and total biomass. Clonal diversity was extremely low with one F. japonica clone and five F. ×bohemica genotypes. The two taxa were significantly different in several traits, but did not vary in biomass or plasticity of any trait. All traits were highly plastic in response to salinity, but differed significantly among genets. Despite this variation, plants from the salt marsh habitats did not perform better in the salt treatment, suggesting that they are not better adapted to tolerate salt. Instead, our data support the hypothesis that plasticity in salt tolerance traits may allow these taxa to live in saline habitats without specific adaptation to tolerate salt.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...